Maximize Your Business Potential With Seamless AI Integration.

Maximize Your Business
Potential With Seamless AI Integration.

With our AI consulting and AI integration services, you now have the ability to choose from an entire gamut of AI solutions and tools to deliver quick results.

RandomWalk
RandomWalk

Leading The World’s AI Integration

Leading_the_World_Ai_integration

Leading The World’s AI Integration

Choose the ideal AI tools for your business with expert guidance from Random Walk, where we collaborate to implement custom AI solutions.

Our engineers specialize in seamless AI integration, accelerating connections between AI tools and existing software.

From business functions like marketing, HR and finance to different industries like retail and pharma, find the right AI tool.

Leading_the_World_Ai_integration

If you are an AI tools provider,

Make It Easy To Choose
Your Tools

Work with Random Walk to integrate your AI tool into our platform. While our customers develop software with us, we will recommend your AI solution.

If you are a client looking for AI capabilities,

Begin Your AI Journey
Now

Let us work with you to integrate niche AI tools into your day-to-day business functions like HR, marketing, and finance. We also cater various industry-specific AI tools to aid operations.

Products

Our Blogs

Refining and Creating Data Visualizations with LIDA

Microsoft’s Language-Integrated Data Analysis (LIDA) is a game-changer, offering an advanced framework to refine and enhance data visualizations with seamless integration, automation, and intelligence. Let’s explore the key features and applications of LIDA, and its transformative impact on the data visualization landscape. LIDA is a powerful library designed to effortlessly generate data visualizations and create data-driven infographics with precision. What makes LIDA stand out is its grammar-agnostic approach, enabling compatibility with various programming languages and visualization libraries, including popular ones like matplotlib, seaborn, altair, and d3. Plus, it seamlessly integrates with multiple large language model providers such as OpenAI, Azure OpenAI, PaLM, Cohere, and Huggingface.

Refining and Creating Data Visualizations with LIDA

Core Web Vitals: How to Improve LCP and CLS for Optimal Site Performance

Optimizing a website for performance is essential to enhance user experience and boost search engine rankings. Two critical metrics from Google’s Core Web Vitals (CWV)—Largest Contentful Paint (LCP) and Cumulative Layout Shift (CLS)—play a significant role in measuring and improving a site’s performance. These metrics outline the key strategies for optimization and highlight the observed impact on both mobile and desktop performance.

Core Web Vitals: How to Improve LCP and CLS for Optimal Site Performance

From Frontend-Heavy to a Balanced Architecture: Enhancing System Efficiency

Building efficient and scalable applications often requires balancing responsibilities between the frontend and backend. When tasks like report generation are managed solely on the frontend, it can lead to performance bottlenecks, scalability issues, and user experience challenges. Transitioning to a balanced architecture can address these limitations while improving overall system efficiency.

From Frontend-Heavy to a Balanced Architecture: Enhancing System Efficiency

From Blinking LEDs to Real-Time AI: The Raspberry Pi’s Role in Innovation

The Raspberry Pi, launched in 2012, has entered the vocabulary of all doers and makers of the world. It was designed as an affordable, accessible microcomputer for students and hobbyists. Over the years, Raspberry Pi has evolved from a modest credit card-sized computer into a versatile platform that powers innovations in fields as diverse as home economics to IoT, AI, robotics and industrial automation. Raspberry Pis are single board computers that can be found in an assortment of variations with models ranging from anywhere between $4 to $70. Here, we’ll trace the journey of the Raspberry Pi’s evolution and explore some of the innovations that it has spurred with examples and code snippets.

From Blinking LEDs to Real-Time AI: The Raspberry Pi’s Role in Innovation

The Intersection of Computer Vision and Immersive Technologies in AR/VR

In recent years, computer vision has transformed the fields of Augmented Reality (AR) and Virtual Reality (VR), enabling new ways for users to interact with digital environments. The AR/VR market, fueled by computer vision advancements, is projected to reach $296.9 billion by 2024, underscoring the impact of these technologies. As computer vision continues to evolve, it will create even more immersive experiences, transforming everything from how we work and learn to how we shop and socialize in virtual spaces. An example of computer vision in AR/VR is Random Walk’s WebXR-powered AI indoor navigation system that transforms how people navigate complex buildings like malls, hotels, or offices. Addressing the common challenges of traditional maps and signage, this AR experience overlays digital directions onto the user’s real-world view via their device's camera. Users select their destination, and AR visual cues—like arrows and information markers—guide them precisely. The system uses SIFT algorithms for computer vision to detect and track distinctive features in the environment, ensuring accurate localization as users move. Accessible through web browsers, this solution offers a cost-effective, adaptable approach to real-world navigation challenges.

The Intersection of Computer Vision and Immersive Technologies in AR/VR
Refining and Creating Data Visualizations with LIDA

Refining and Creating Data Visualizations with LIDA

Microsoft’s Language-Integrated Data Analysis (LIDA) is a game-changer, offering an advanced framework to refine and enhance data visualizations with seamless integration, automation, and intelligence. Let’s explore the key features and applications of LIDA, and its transformative impact on the data visualization landscape. LIDA is a powerful library designed to effortlessly generate data visualizations and create data-driven infographics with precision. What makes LIDA stand out is its grammar-agnostic approach, enabling compatibility with various programming languages and visualization libraries, including popular ones like matplotlib, seaborn, altair, and d3. Plus, it seamlessly integrates with multiple large language model providers such as OpenAI, Azure OpenAI, PaLM, Cohere, and Huggingface.

Core Web Vitals: How to Improve LCP and CLS for Optimal Site Performance

Core Web Vitals: How to Improve LCP and CLS for Optimal Site Performance

Optimizing a website for performance is essential to enhance user experience and boost search engine rankings. Two critical metrics from Google’s Core Web Vitals (CWV)—Largest Contentful Paint (LCP) and Cumulative Layout Shift (CLS)—play a significant role in measuring and improving a site’s performance. These metrics outline the key strategies for optimization and highlight the observed impact on both mobile and desktop performance.

From Frontend-Heavy to a Balanced Architecture: Enhancing System Efficiency

From Frontend-Heavy to a Balanced Architecture: Enhancing System Efficiency

Building efficient and scalable applications often requires balancing responsibilities between the frontend and backend. When tasks like report generation are managed solely on the frontend, it can lead to performance bottlenecks, scalability issues, and user experience challenges. Transitioning to a balanced architecture can address these limitations while improving overall system efficiency.

From Blinking LEDs to Real-Time AI: The Raspberry Pi’s Role in Innovation

From Blinking LEDs to Real-Time AI: The Raspberry Pi’s Role in Innovation

The Raspberry Pi, launched in 2012, has entered the vocabulary of all doers and makers of the world. It was designed as an affordable, accessible microcomputer for students and hobbyists. Over the years, Raspberry Pi has evolved from a modest credit card-sized computer into a versatile platform that powers innovations in fields as diverse as home economics to IoT, AI, robotics and industrial automation. Raspberry Pis are single board computers that can be found in an assortment of variations with models ranging from anywhere between $4 to $70. Here, we’ll trace the journey of the Raspberry Pi’s evolution and explore some of the innovations that it has spurred with examples and code snippets.

The Intersection of Computer Vision and Immersive Technologies in AR/VR

The Intersection of Computer Vision and Immersive Technologies in AR/VR

In recent years, computer vision has transformed the fields of Augmented Reality (AR) and Virtual Reality (VR), enabling new ways for users to interact with digital environments. The AR/VR market, fueled by computer vision advancements, is projected to reach $296.9 billion by 2024, underscoring the impact of these technologies. As computer vision continues to evolve, it will create even more immersive experiences, transforming everything from how we work and learn to how we shop and socialize in virtual spaces. An example of computer vision in AR/VR is Random Walk’s WebXR-powered AI indoor navigation system that transforms how people navigate complex buildings like malls, hotels, or offices. Addressing the common challenges of traditional maps and signage, this AR experience overlays digital directions onto the user’s real-world view via their device's camera. Users select their destination, and AR visual cues—like arrows and information markers—guide them precisely. The system uses SIFT algorithms for computer vision to detect and track distinctive features in the environment, ensuring accurate localization as users move. Accessible through web browsers, this solution offers a cost-effective, adaptable approach to real-world navigation challenges.

Additional

Your Random Walk Towards AI Begins Now